

Power Mate Technology, Inc

NSR01 Series

DC-DC Converter Up to 15 Watts

Automobile

PART NUMBER STRUCTURE

NSR01 -Series Name

Input

Voltage

See table

S Output

Quantity

05

Output

Voltage

(VDC)

Mounting Options

(VDC)

S:Single See table

_:Vertical Mounting A: Horizontal Mounting

POWER MATE TECHNOLOGY

NSR01 Series

TECHNICAL SPECIFICATION All specifications are typical at nominal input, full load and 25°C unless otherwise noted **POSITIVE OUTPUT APPLICATION**

Model	Input Range	Output Voltage	Output Current		iency	Maximum	
Number	mpat range	@Fu		@ No Load	Min. Vin Max. Vin		Capacitor Load
	VDC	VDC	А	mA	%	%	μF
NSR01-12S1P2	4.6 ~ 36	1.2		1.0	73.0	62.0	
NSR01-12S1P5	4.6 ~ 36	1.5		1.0	77.0	66.5	
NSR01-12S1P8	4.6 ~ 36	1.8		1.0	80.5	70.0	
NSR01-12S2P5	4.6 ~ 36	2.5		1.0	83.5	75.5	
NSR01-12S3P0	4.6 ~ 36	3.0		1.5	86.5	78.5	
NSR01-12S3P3	4.6 ~ 36	3.3	1	1.5	87.5	79.5	470
NSR01-12S05	6.5 ~ 36	5.0		2.5	91.5	83.0	
NSR01-12S6P5	8.0 ~ 36	6.5		3.0	93.0	86.0	
NSR01-12S09	10.5 ~ 36	9.0		3.5	94.5	88.5	
NSR01-24S12	13.5 ~ 36	12		2.5	95.0	91.5	
NSR01-24S15	16.5 ~ 36	15		3.5	95.5	92.5	

NEGATIVE OUTPUT APPLICATION

NEGATIVE OUT	OI AI I LICATI	014						
Model Number	Input Range	Output Voltage	Output Current @Full Load	Input Current @ No Load	Efficiency Min. Vin Max. Vin		Maximum Capacitor Load	
1 tallison	VDC	VDC	А	mA	%	%	μF	
NSR01-12S1P2	4.6 ~ 32	-1.2	-0.6	1.0	62.0	61.0		
NSR01-12S1P5	4.6 ~ 32	-1.5	-0.6	1.0	69.5	64.5		
NSR01-12S1P8	4.6 ~ 32	-1.8	-0.6	1.0	72.0	67.5		
NSR01-12S2P5	4.6 ~ 32	-2.5	-0.6	1.0	72.0	74.0		
NSR01-12S3P0	4.6 ~ 32	-3.0	-0.6	2.0	73.0	76.5		
NSR01-12S3P3	4.6 ~ 32	-3.3	-0.6	2.0	74.0	77.5	470	
NSR01-12S05	4.6 ~ 31	-5.0	-0.4	3.0	79.5	78.5		
NSR01-12S6P5	7.0 ~ 29	-6.5	-0.3	4.0	84.5	80.0		
NSR01-12S09	7.0 ~ 27	-9.0	-0.3	7.0	85.0	82.0		
NSR01-24S12	7.0 ~ 24	-12	-0.3	8.0	85.0	85.5		
NSR01-24S15	7.0 ~ 21	-15	-0.2	10	85.5	84.5		

INPUT SPECIFICATIONS						
Parameter		Conditions	Min.	Тур.	Max.	Unit
Operating input voltage range	Positive application	See table	4.6		36	VDC
	Negative application		4.6		32	
Start up time	Constant resistive load	Power up		5		ms
Rise time	Time for Vout rises from 10%	to 90% of Vout		3.5		ms
Input filter				Capaci	tor type	
Input reflected ripple current				100		mAp-p

Parameter	Condit	Min.	Тур.	Max.	Unit		
Voltage accuracy			-2.0		+2.0	%	
Line regulation	Low Line to High Line at Full Load		-0.2		+0.2	%	
Load regulation	10% to 100% of Full Load						
-	Vertical mounting	1.5Vout	-0.6		+0.6		
	ŭ	Others	-0.4		+0.4	%	
	Horizontal mounting	1.5Vout, 1.8Vout	-1.2		+1.2		
	J	Others	-0.4		+0.4		
Ripple and noise	Measured by 20MHz bandwidth	Vout≦6.5VDC		50			
		Vout≧9.0VDC	75			mVp-p	
Temperature coefficient			-0.015		+0.015	%/°C	
Dynamic load response	50% load step change	Peak deviation		150	250	mV	
		Recovery time		250	350	μs	
Output start-up overshoot					+1	%	
Over load protection				2		Α	
Short circuit protection				nuous, aut	omatics red	covery	

GENERAL SPECIFICATION	DNS					
Parameter	Cond	itions	Min.	Тур.	Max.	Unit
Switching frequency		Vout≦3.3VDC	240	300	360	kHz
		Vout≧5.0VDC	464	580	696	KI IZ
Safety meets				IE	C/ EN/ UL	.62368-1
Case material				Non-cond	ducted blac	k plastic
Potting material Silicone (U					L94 V-0)	
Weight					1.9g (0.067oz)
MTBF MIL-HDBK-217F, Full load					2.009	×10 ⁷ hrs

ENVIRONMENTAL SPECIFICATIONS						
Parameter		Conditions	Min.	Тур.	Max.	Unit
Operating ambient temperature		With derating	-40		+100	℃
Over temperature protection	Internal IC junction			170		°C
Storage temperature range			-55		+125	°C
Thermal shock					MIL-S	TD-810F
Shock					MIL-S	TD-810F
Vibration					MIL-S	TD-810F
Relative humidity					5% to	95% RH

CAUTION: This power module is not internally fused. An input line fuse must always be used.

NEGATIVE OUTPUT APPLICATION

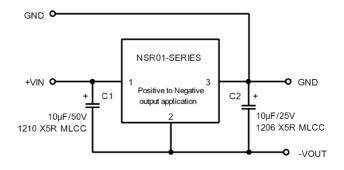
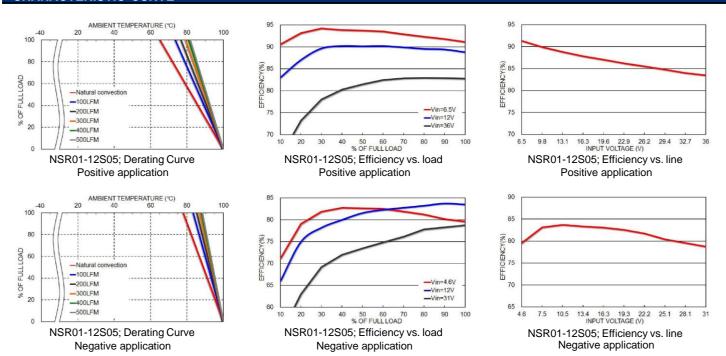



Figure 1 C1 and C2 are required that should be fitted close to the converter's pins. Maximum capacitive load including C2 is 470µF.

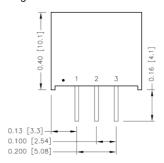
CHARACTERISTIC CURVE

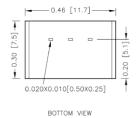
FUSE CONSIDERATION

This power module is not internally fused. An input line fuse must always be used.

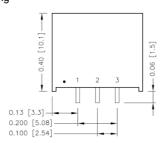
This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone operation to an integrated part of sophisticated power architecture.

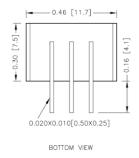
To maximum flexibility, internal fusing is not included; however, to achieve maximum safety and system protection, always use an input line fuse.


The input line fuse suggest as below:

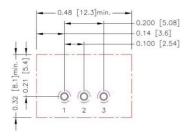

Model	Fuse Rating (A)	Fuse Type
NSR01-00S00	2.0	Slow-Blow

The table based on the information provided in this data sheet on inrush energy and maximum DC input current at low Vin.

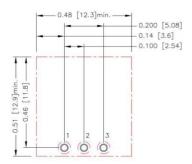

MECHANICAL DRAWING


Standard type: Vertical mounting

Suffix-A: Horizontal mounting


PIN CONNECTION

PIN	DEFINE
1	+Vin
2	GND
3	+Vout


- 1. All dimensions in inch [mm]
- 2. Tolerance :x.xx±0.02 [x.x±0.5] x.xxx±0.01 [x.xx±0.25]
- 3. Pin dimension tolerance ±0.004[0.10]

RECOMMENDED PAD LAYOUT

Standard type: Vertical mounting

Suffix-A: Horizontal mounting

All dimensions in inch[mm] Pad size(lead free recommended) Through hole 1.2.3: Ø0.031[0.80] Top view pad 1.2.3: Ø0.039[1.00] Bottom view pad 1.2.3: Ø 0.063[1.60]

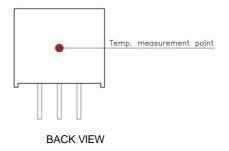
THERMAL CONSIDERATIONS

The power module operates in a variety of thermal environments.

However, sufficient cooling should be provided to help ensure reliable operation of the unit.

Heat is removed by conduction, convection, and radiation to the surrounding Environment.

Proper cooling can be verified by measuring the point as the figure below.


The temperature at this location should not exceed 100°C.

When Operating, adequate cooling must be provided to maintain the test point temperature at or below 100°C.

Although the maximum point Temperature of the power modules is 100°C, you can limit this Temperature to a lower value for extremely high reliability.

The unit will shutdown if the internal IC junction exceeds 170°C (typical), but the thermal shutdown is not intended as a guarantee that the unit will survive temperature beyond its rating. The module will automatically restarts after it cools down.

■ Thermal test condition with vertical direction by natural convection (20LFM).

